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Abstract

This paper deals with some problems with the concept and properties of the folding mechanism named tangential longitudinal strain. A gen-
eral two-dimensional mathematical description of this mechanism in terms of displacements and finite strains is presented. In the analysis of this
mechanism of folding, two geologically reasonable variants are considered. The first of these, referred to as parallel tangential longitudinal strain
folding, involves no finite elongation of lines perpendicular to the layer and produces class 1B (parallel) folds. The second variant is charac-
terized by the conservation of area across the fold profile and is therefore termed equiareal tangential longitudinal strain folding; it produces
folds ranging from class 1B to more complex shapes with the development of a bulge in the hinge zone inner arc when amplitude and curvature
are high. Using the computer program ‘‘FoldModeler’’ which incorporates the derived equations for displacements and finite strains, the
geometrical features of idealized folds produced by these two variants have been studied, together with those arising from their successive
or simultaneous combination. The implications of the operation of these two deformation mechanisms in natural folds are then considered
and a discussion is presented about the features that can be diagnostic of their operation in nature. It is suggested that the two mechanisms
operate together in the formation of natural folds, in a way that deformation probably begins with equiareal tangential longitudinal strain,
but subsequently gives way to parallel tangential longitudinal strain when strain concentration in some parts of the folded layer makes area
change probable.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Definition of the folding mechanism referred to as ‘‘tangen-
tial longitudinal strain’’ (Ramsay, 1967, p. 397) is based on the
well-known fact that when a competent layer is folded, lines
parallel to the layer boundaries increase or decrease in length
depending on their position near the outer or the inner arc, re-
spectively (cf. Kuenen and de Sitter, 1938). Separating the
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zones of tangential extension and tangential shortening is a sur-
face made up of points with zero finite strain or neutral surface
(neutral line in two dimensions). These properties can be eas-
ily demonstrated by the distortion of an initially square grid
inscribed on the profile plane of a flexed rubber layer. More-
over, it is observed that straight lines normal to the folded
layer boundaries remain approximately straight and normal
to the boundaries during folding. These simple results illus-
trate in a general way the phenomenon of ‘‘tangential longitu-
dinal strain’’ folding.

Mathematical modelling of this mechanism, intended to de-
termine the detailed strain distribution inside the folded layer
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and its structural consequences, is not a simple task and poses
at present some important questions that remain unsolved.
Ramberg (1961) was one of the first authors to study this
mechanism and he named it ‘‘concentric longitudinal strain’’.
According to him, it would dominate deformation in the hinge
zone of folds, and it was quantitatively compared with ‘‘con-
centric shear strain’’ (or ‘‘flexural-flow’’ of Ramsay, 1967, p.
392), that would control deformation on the fold limbs. In
the model developed by Ramberg (1961) no restriction is
made about area change during deformation (see for example
his Fig. 1); this author uses as a starting point the result ob-
tained by Timoshenko (1940, pp. 38 and 115) in the theory
of beams in pure bending (i.e. in conditions of no concentric
shear strain), concentric longitudinal strain depends on the dis-
tance to the neutral surface. The main conclusion obtained by
Ramberg (1961) is that strain produced by concentric shear on
the limbs is negligible when compared with concentric longi-
tudinal strain in the hinge zone for beds of homogeneous rock
and where the ratio of competent layer thickness to fold wave-
length is not high. These results agree with those obtained sub-
sequently by other authors (Hudleston et al., 1996; Toimil,
2005).

Ramsay (1967, pp. 397e411) and Ramsay and Huber
(1987, pp. 457e462) made a detailed study of tangential lon-
gitudinal strain. In their model for this mechanism, lines ini-
tially normal to the fold boundaries remain approximately
normal after folding, and area is preserved in all parts of the
folded layer profile. Assuming these two conditions (with
both of them holding exactly), these authors concluded that
the absolute value of the tangential extension at points on
a normal to the neutral line equals the product of the curvature
of this line and the distance from it. Nevertheless, these two
conditions are mutually incompatible, since area conservation
implies a thickness variation of the sub-layers above and be-
low the neutral line proportional to the variation in curvature
of this line. This thickness variation leads to the distortion
of lines initially normal to layer boundaries, so that their or-
thogonal relationship is lost during folding (Ramsay, 1967,
Figs. 7e63). Due to this, the analysis only provides approxi-
mate results.

Bobillo-Ares et al. (2000) developed in detail another var-
iant of a constant area model for tangential longitudinal strain.
The only condition imposed on their model is that lines
originally straight and normal to the neutral line and the layer
boundaries remain straight and normal to the neutral line as
folding progresses. A consequence of this model is that the
axes of the strain ellipse at points along the layer boundaries
are not exactly tangential and normal to these boundaries,
but show a small deviation that increases as the variation in
curvature of the neutral line increases. This means that some
shear strain exists in general along the layer boundaries, and
perpendicularity between the tangent to the layer boundary
and lines originally normal to it is lost.

In order to improve the models of tangential longitudinal
strain, it must be taken into account that many features of nat-
ural folds suggest the existence of area change during opera-
tion of this mechanism; e.g. mineralized radial veins
widening towards the outer arc in the hinge zone indicate
area increase during folding, or convergent pressure solution
cleavage patterns in the inner arc suggest area decrease.
Models of tangential longitudinal strain with area change
have been proposed by Hudleston and Holst (1984), Hudleston
and Tabor (1988), Hudleston and Srivastava (1997), and Or-
mand and Hudleston (2003), who consider the possibility of
area reduction due to pressure solution in the inner arc and
re-precipitation with area increase in the outer arc. These au-
thors propose models of tangential longitudinal strain in
which: (a) the principal directions of strain are always tangen-
tial and normal to the layer boundaries and (b) the distance
from any point of the folded layer to the neutral line remains
constant during folding, which implies generation of a perfect
parallel fold. Two variants of this model are: ‘‘inner arc col-
lapse’’ (Hudleston and Tabor, 1988; Hudleston and Srivastava,
1997) and ‘‘outer-arc stretching’’ (Ormand and Hudleston,
2003), characterized by the location of the neutral line in the
outer arc or the inner arc, respectively. However, the kinematic
properties of these models have not been analysed. This anal-
ysis would be very interesting in order to compare the results
with those obtained for the model of tangential longitudinal
strain without area change, and would allow the combination
of both models to obtain theoretical folds more similar to those
found in rocks.

In this study, we develop a general mathematical model for
folding by tangential longitudinal strain in two dimensions
with or without area change. Then, several particular geolog-
ically reasonable cases will be considered, for which the
Fig. 1. Initial (a) and final (b) configuration showing the transformation of a general point Pep with folding and the general (bE1, bE2) and local (bt, bn) reference

systems. L and l are the neutral lines in the initial and final configurations, respectively.
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models with and without area change are compared in order to
identify the diagnostic features that could allow the discrimi-
nation of these two mechanisms in natural folds. Finally,
a model will be presented in which both types of tangential
longitudinal strain can be combined in successive or simulta-
neous superposition in order to obtain theoretical folds that
provide the best fit to natural folds. The notation used in the
theoretical analysis is shown in Table 1.

2. Definition of tangential longitudinal strain (TLS)

Let us consider an initially planar layer that deforms to a fi-
nal folded form (Fig. 1). The main conditions that characterize
TLS are (a) the existence of a ‘‘neutral line’’ (L in the unde-
formed state and l in the deformed state) whose points have
no finite strain and (b) straight lines perpendicular to the neu-
tral line in the original state remain straight and normal to it in
the final configuration. In the present analysis, the neutral line
stays attached to the same material points throughout deforma-
tion. A particle that initially occupies the point P can be lo-
cated after folding using this procedure:

1. We determine the base point Q, which is the intersection
point of the neutral line L and the perpendicular to it
drawn from the point P (Fig. 1a).

2. We locate the point q, the deformed position of the initial
point Q, on l (Fig. 1b).

3. At this point q, we consider the unit vector bn, perpendicular
to l and pointing towards the inner arc of the folded layer.

4. Finally, the point p, the deformed position of P, is located
by specifying the coefficient d so that [see Appendix A,
Eq. (A1)]:

Table 1

Symbols and abbreviations used in the text

Cij: components of the Green tensor in the basis E.

CP: Green tensor at point P.

d1ðX;YÞ ¼ v
vX

dðX; YÞ:
d2ðX;YÞ ¼ v

vY
dðX;YÞ:

E ¼ ðbE1; bE2Þ: orthonormal vector basis for the initial configuration.

ETLS: equiareal tangential longitudinal strain.

Gij: elements of the Gram matrix associated with the vector basis E.

I1, I2: Invariants of the Green finite strain tensor at point P.

J(X, Y ): area ratio (final area/initial area).

L: neutral line in the initial configuration.

l: neutral line in the deformed configuration.bnðXÞ: unit vector normal to the neutral line at X.

PTLS: parallel tangential longitudinal strain.

P, Q.: points in the initial configuration.

p, q.: points in the deformed configuration.

R: strain ratio

�
R ¼

ffiffiffiffiffi
l1

pffiffiffiffiffi
l2

p
�

.

S(a, b): oriented area of the parallelogram (a, b).

TLS: tangential longitudinal strain.btðXÞ: unit vector tangent to the neutral line at X.

D: dilation.

dij: Kronecker delta (d11¼ d22¼1, d12¼ d21¼0).

k(X ): curvature of the neutral line at X.

l1, l2: principal quadratic elongations.

r(X )¼ 1/k(X ): radius of curvature of the neutral line at X.
p¼ qþ dbn: ð1Þ
Any TLS is characterized by specifying the image l of the

neutral line L and the value of the coefficient d for any point P
of the initial layer. Particular cases of TLS can be defined us-
ing a function d(X, Y ) that gives a d value for any point (X, Y )
of the folded layer. Nevertheless, among all the possible
d functions fulfilling condition (1) and the basic requirements
of TLS, many will give rise to improbable fold shapes in geo-
logical bodies.

3. Analysis of TLS

We choose a point O on the neutral line L as origin of the
coordinate system (Fig. 1a). Let bE2 be a unit vector perpendic-
ular to L and heading from the neutral line L towards the inner
arc. bE1 is a unit vector perpendicular to bE2 in such a direction
that the basis E ¼ ðbE1; bE2Þ is a direct one.

For an arbitrary point P with coordinates (X, Y ), we have:

OP
�!¼ XbE1 þ YbE2; ð2Þ

and, for its base point Q:

OQ
�!¼ XbE1: ð3Þ

In this coordinate system, the fundamental equation (1) defin-
ing TLS can be written in the form:

p¼ jðX;YÞ ¼ 4ðXÞ þ dðX;YÞbnðXÞ; ð4Þ

where (X, Y ) are the coordinates of point P, j(X, Y ) is the
deformed position of P, 4(X ) is the deformed position of Q,
d(X, Y ) is the coefficient that defines the position of point p
along the straight line normal to l at point 4(X ), and bnðXÞ is
the normal unit vector at q¼ 4(X ).

The coordinate X allows the straightforward measurement
of distances along the neutral line L. The distance between
points Q ¼ Oþ XbE1 and Q0 ¼ Oþ X0bE1 is jX0 � Xj.

Due to the neutral character of the line L, the variable X in
function 4(X ) also measures the arc length on the image curve
l. Then, the tangent unit vector btðXÞ at q¼ 4(X ) can be ob-
tained by direct differentiation:

btðXÞ ¼ 40ðXÞ: ð5Þ

The direction chosen for vector E1 guarantees a positive orien-
tation of the orthonormal basis ðbtðXÞ; bnðXÞÞ. The vectors btðXÞ
and bnðXÞ are related to their derivatives by the well known
Frenet formulae:

bt 0ðXÞ ¼ kðXÞbnðXÞ; ð6Þ

bn 0ðXÞ ¼ �kðXÞbtðXÞ: ð7Þ

The function k(X ) is the curvature at point 4(X ). By conven-
tion we put k(X )� 0. Therefore, the radius of curvature
r(X )¼ 1/k(X ) is also positive.



1838 N.C. Bobillo-Ares et al. / Journal of Structural Geology 28 (2006) 1835e1848
4. Deformation gradient

At point P with coordinates (X, Y ), the deformation gradi-
ent of the transformation p¼ j(X, Y ) is the linear operator j 0P
that, for every vector V ¼ V1

bE1 þ V2
bE2, assigns the vector:

j0PðVÞ ¼
d

db
jðXþ bV1;Yþ bV2Þ

����
b¼0

: ð8Þ

Like any other operator, the gradient is completely character-
ized at a point by the image vectors of the base vectors:

j0P
�bE1

�
¼ vp

vX
; j0P

�bE2

�
¼ vp

vY
: ð9Þ

Differentiating Eq. (4) we immediately obtain the relations:

vp

vX
¼ 40ðXÞ þ d1ðX;YÞbnðXÞ þ dðX;YÞbn 0ðXÞ; ð10Þ

vp

vY
¼ d2ðX;YÞbnðXÞ; ð11Þ

where d1(X, Y ) and d2(X, Y ) are the partial derivatives of
d computed at point P with respect to the first and the second
arguments, respectively. Taking into account the Frenet equa-
tion (7), we finally obtain:

vp

vX
¼ ð1� kðXÞdðX;YÞÞbtðXÞ þ d1ðX;YÞbnðXÞ; ð12Þ

vp

vY
¼ d2ðX;YÞbnðXÞ: ð13Þ

5. Area ratio

Let us consider the vector basis ðbE1; bE2Þ positioned at point
P. The associated area is SðbE1; bE2Þ [Appendix A, Eq. (A2)].
The respective images ðvp=vX; vp=vYÞ characterize a parallel-
ogram with area Sðvp=vX; vp=vYÞ. We define the area ratio by
the quotient:

JðX;YÞ ¼
S

�
vp

vX
;
vp

vY

�
SðbE1; bE2Þ

: ð14Þ

Taking into account that real transformations cannot change
the orientation of a parallelogram, we have the condition:

JðX;YÞ> 0: ð15Þ

Obviously, the null value must be excluded as well.
Using the result Eq. (2), from Eqs. (12) and (13) we obtain:

JðX;YÞ ¼
����1� kðXÞdðX;YÞ 0

d1ðX;YÞ d2ðX;YÞ

����SðbtðXÞ;bnðXÞÞ
SðbE1; bE2Þ

: ð16Þ
Thanks to the form we have chosen for the basis E ¼
SðbE1; bE2Þ, the oriented area ratio of the second factor is þ1.
So, the equation of area ratio for TLS is:

JðX;YÞ ¼ ð1� kðXÞdðX;YÞÞd2ðX;YÞ: ð17Þ

The direction chosen for vector bnðXÞ imposes that function
d(X, Y ) is strictly increasing for the variable Y, for every X.
Thus, d2(X, Y ) has to be positive. Taking into account also
the condition (15) and the Eq. (17), we obtain a limit for the
values of d(X, Y ):

dðX;YÞ< 1

kðXÞ ¼ rðXÞ: ð18Þ

6. Principal values and directions of strain

The analysis of the longitudinal strain in different direc-
tions is carried out by the tensor field CP, a symmetric bilinear
function at every point P:

CPðV;WÞ ¼ j0PðVÞj0PðWÞ: ð19Þ

In the basis E, CP is represented by a matrix whose elements
are the quantities:

CijðX;YÞ ¼ j0P
�bEi

�
j0P
�bEj

�
: ð20Þ

From Eqs. (12) and (13), we immediately obtain:

C11ðX;YÞ ¼ ð1� kðXÞdðX;YÞÞ2þd1ðX;YÞ2; ð21Þ

C22ðX;YÞ ¼ d2ðX;YÞ2; ð22Þ

C12ðX;YÞ ¼ d1ðX;YÞd2ðX;YÞ: ð23Þ
The principal value l (quadratic elongation) and the princi-

pal vector V ¼ V1
bE1 þ V2

bE2 are computed solving the system
of two linear equations:

X2

j¼1

�
Cij � lGij

�
Vj ¼ 0; i¼ 1;2; ð24Þ

being Gij ¼ bEi$bEj ¼ dij, the elements of the Gram’s matrix as-
sociated with the vector basis E. The possible values of l are
the solutions of the characteristic equation:����C11 � l C12

C21 C22� l

����¼ 0; ð25Þ

l1 ¼ tþ
ffiffiffiffiffiffiffiffiffiffiffiffi
t2� I2

p
; l2 ¼ t�

ffiffiffiffiffiffiffiffiffiffiffiffi
t2� I2

p
; ð26Þ

with

t ¼ I1

2
¼ 1

2
ðC11þC22Þ; I2 ¼ C11C22�C2

12: ð27Þ
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Both solutions are real and positive because I2> 0, t> 0 and
t2� I2> 0. Furthermore l1> l2. The latter are known as the
principal quadratic elongations (Ramsay, 1967, p. 65).

In order to characterize the intensity of the strain by a single
number, we use the strain ratio (Ramsay, 1967, p. 199):

R¼
ffiffiffiffiffi
l1

pffiffiffiffiffi
l2

p ; ð28Þ

the ratio of the lengths of the major and minor semi-axes of the
strain ellipse. Finally, using Eq. (26), we obtain:

R¼ zþ
ffiffiffiffiffiffiffiffiffiffiffiffi
z2� 1
p

; ð29Þ

with

z¼ tffiffiffiffi
I2

p ¼ ð1� kðXÞdðX;YÞÞ2þd1ðX;YÞ2þd2ðX;YÞ2

2ð1� kðXÞdðX;YÞÞd2ðX;YÞ
: ð30Þ

7. Particular cases of tangential longitudinal strain (TLS)

Taking into account the descriptions of folding by TLS
found in the geological literature, two different models of
this mechanism will be considered.

7.1. Parallel tangential longitudinal strain (PTLS)

In this model, the orthogonal thickness of the bed is kept
constant and the strain ellipse axes remain tangential and nor-
mal to the layer boundaries during folding. Consequently, the
area varies heterogeneously throughout the folded layer. Ac-
cording to this, the neutral line separates an inner arc with
l1¼ 1 from an outer arc l2¼ 1.

7.2. Equiareal tangential longitudinal strain (ETLS)

In this model, the folding deformation maintains constant
area throughout the folded layer, and produces a thickening
of the inner arc and a thinning of the outer arc. In the general
case with variation of curvature along the neutral line, this
model gives rise to obliquity between the strain ellipse axes
and the layer boundaries (Bobillo-Ares et al., 2000).

These two models represent extreme scenarios that can be
combined to simulate intermediate situations.

8. Parallel tangential longitudinal strain (PTLS)

In this folding mechanism, the distance from any particle to
the neutral line remains constant during the folding process.
The mechanism is characterized by the straightforward
condition:

dðX;YÞ ¼ Y; ð31Þ

d1ðX;YÞ ¼ 0; d2ðX;YÞ ¼ 1: ð32Þ
The corresponding area ratio is obtained by substituting these
expressions in Eq. (17):

JðX;YÞ ¼ 1� kðXÞY: ð33Þ

On the other hand, from Eqs. (21)e(23) we have:

C11 ¼ ð1þ kðXÞYÞ2; C22 ¼ 1; C12 ¼ 0: ð34Þ

As [Cij] is a diagonal matrix, the principal directions are those
of vectors bE1 and bE2, and the corresponding principal values
are C11 and C22, which, ordered from higher to lower values,
give:

l1 ¼
�

1 Y > 0
ð1� kðXÞYÞ2 Y < 0

ð35Þ

l2 ¼
�
ð1� kðXÞYÞ2 Y > 0
1 Y < 0

: ð36Þ

Hence,

R¼ 1� kðXÞY ðfor the outer arcÞ; ð37Þ

R¼ 1

1� kðXÞY ðfor the inner arcÞ: ð38Þ

These equations are represented graphically in Fig. 2 for sev-
eral Y values.

Moreover, from Eqs. (33), (35) and (36), we have:

J ¼ R ðfor the outer arcÞ; ð39Þ

J ¼ 1

R
ðfor the inner arcÞ: ð40Þ

If area change is expressed as a dilation ðD ¼ J � 1Þ, we have:

D¼ kðXÞY ðfor the outer arcÞ; ð41Þ

D¼�kðXÞY ðfor the inner arcÞ: ð42Þ

Fig. 2. Variation of R as a function of the curvature k of the neutral line for

PTLS and ETLS (dashed lines).
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This result indicates that the percentage area decrease at point
(X, Y ) equals the percentage area increase at point (X, �Y ).

PTLS is a mechanism that could be ideally expected during
folding of a highly compressible material. A visualization of
this mechanism is given by the hypothetical folding of a flexi-
ble comb with convergent teeth that simulate the layer nor-
mals. In reality, a deforming rock would resist such area
changes and this will hamper the operation of this ideal fold-
ing mechanism.

9. Equiareal tangential longitudinal strain (ETLS)

In this case, the folding mechanism is completely defined
by adding the condition of area conservation (incompressibil-
ity condition): J(X, Y )¼ 1. That is:

ð1� kðXÞdðX;YÞÞd2ðX;YÞ ¼ 1: ð43Þ

This simple partial differential equation can be directly inte-
grated (Bobillo-Ares et al., 2000) to obtain the equation:

kðXÞdðX;YÞ2�2dðX;YÞ þ 2Y ¼ 0; ð44Þ

and from here:

dðX;YÞ ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2YkðXÞ

p
kðXÞ : ð45Þ

The positive sign of the root must be rejected since it would
lead to a negative area ratio.

Finally, note that ETLS is only meaningful when the radi-
cand in Eq. (45) is positive, i.e., when the following condition
holds:

Y <
r

2
: ð46Þ

Application of Eqs. (21)e(23) and (26) allows the principal
values of strain and the strain ratio R to be obtained, though
a short analytical expression cannot be derived for them in
this case. Fig. 2 shows the variation of R as a function of
the curvature for several Y values and allows comparison of
the curves obtained for ETLS and PTLS. Since R slightly de-
pends on the derivative of the curvature (Bobillo-Ares et al.,
2000), very small variations can be expected in these curves
depending on the function that represents the final form of
the neutral line.

10. Mathematical modelling of folds formed by tangential
longitudinal strain: comparison of results

Folds formed by tangential longitudinal strain can be mod-
elled using the program ‘‘FoldModeler’’, developed in the
MATHEMATICA� environment (Bobillo-Ares et al., 2004), by
application of successive folding steps to an original configu-
ration of the layer profile defined by a grid of small quadrilat-
erals. The nodes of the grid are transformed according to the
relationships defined for the two types of tangential longitudi-
nal strain, and this permits the folded layer configuration and
strain state to be obtained. The initial neutral line has been lo-
cated midway to the layer boundaries, though FoldModeler
allows it to be placed also in non-central positions. The pro-
gram allows the application of any combination of the two
variants of TLS described, by superposition of individual
folding steps. Each folding step is defined by specifying the
type of mechanism to be applied, the increment that it pro-
duces in the normalised amplitude of the fold (height/width
ratio for the fold limb (h¼ y0/x0), measured on the neutral
line; Fig. 3), and the form of the neutral line, that is defined
by a piece of a conic section characterised by its eccentricity
(e) (Aller et al., 2004); this parameter can be chosen freely
and in this paper the parabolic form (e¼ 1) has been used
as a simple form that fits the shape of many natural folds.
The superposition of mechanisms can be successive or simul-
taneous; the latter requires addition of a large number of very
low amplitude alternating folding steps of ETLS and PTLS.
The new version of ‘‘FoldModeler’’ used here introduces
the new mechanism PTLS (ETLS was operative in previous
versions), and allows the simultaneous modelling of both
fold limbs, though folds generated in this paper are always
symmetric.

Curves that show the variation of R, J and f (the angle of
inclination of the major axis of the strain ellipse) along the inner
and the outer arc, as a function of the layer dip a, have been used
to analyse the strain distribution in the folded layer (Figs. 4e8).
Fig. 3 shows the sign convention for angles f and a. The curves
Fig. 3. Elements to define the normalised amplitude (h¼ y0/x0) of the folded layer and the angles used to study the strain distribution. a is the dip of the layer at

P and f defines the plunge of the major axis of the strain ellipse at that point.



1841N.C. Bobillo-Ares et al. / Journal of Structural Geology 28 (2006) 1835e1848
Fig. 4. Graphical results for parallel tangential longitudinal strain folding (PTLS). (a), (b) and (c) Initial and folded configuration of the folded layer for normalised

amplitudes 1 and 1.5. (d), (e) and (f) Variation of f (inclination of the major axis of the strain ellipse), R (axial ratio of the strain ellipse), and J (area ratio) as

a function of the layer dip a. IA, inner arc; OA, outer arc.
have been obtained for an original layer with 40 rows and 500
columns, folded to normalised amplitudes of 1 and 1.5. Never-
theless, to allow a better visualization of the folded layer, this is
shown in Figs. 4e8 with only four rows and 50 columns. For
the folded layer with a normalised amplitude of 1.5, other
curves have also been obtained that show the variation of the
maximum R and J values for the inner and the outer arc,
as a function of the percentage of PTLS and ETLS taking
part in a successive or simultaneous superposition of the two
mechanisms (Fig. 9).

10.1. Modelling of the individual PTLS and ETLS

Results for the modelling of pure PTLS and ETLS are
shown in Figs. 4 and 5. In both cases, the major axes of the
strain ellipse show a convergent fan in the inner arc and a con-
centric or nearly concentric pattern in the outer arc. Neverthe-
less, important differences are observed between both types of
TLS that can be summarised in the following points:

- The f vs. a curves show linear patterns for PTLS, whereas
for ETLS a deviation from linearity exists, mainly in the
inner arc, in which the function f is multivalued for the
amplitude of 1.5. Discontinuities observed in the outer
arc curves at a¼ 0 are due to the variation of f from
0 to 180� in the hinge point.

- In the R vs. a curves (Figs. 4 and 5) and the R vs. k curves
(Fig. 2), maximum R values are found in the hinge point,
and are higher for ETLS (9.53 in the inner arc and 1.89 in
the outer arc for h¼ 1.5) than for PTLS (1.83 and 1.45, re-
spectively). Moreover, the R vs. a curve for the inner arc
with h¼ 1.5 shows a loop in the a interval (�30, 30).

- The multivalued character of the inner arc R and f

functions for ETLS with h¼ 1.5 is related with the devel-
opment of a bulge near the hinge zone of the correspond-
ing fold. The increase of normalised amplitude gives rise
to high curvature and curvature variation values in the
hinge zone that increase the tangential shortening in the
inner arc and produce the bulge. This does not appear in
PTLS folding.

- In PTLS, extreme area variations are found at the hinge
points. For h¼ 1.5, J¼ 0.55 in the inner arc (45% area de-
crease) and 1.45 in the outer arc (45% area increase). As
observed, the absolute value of the percentage is equal
in both arcs. In ETLS, no area change occurs in theory;
nevertheless, in the inner arc of the hinge zone, small
area change values are observed (Fig. 9), due to the dis-
crete character of the division of the folded layer in
quadrilaterals.
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Fig. 5. Graphical results for equiareal tangential longitudinal strain folding (ETLS). (a), (b) and (c) Initial and folded configuration of the folded layer for nor-

malised amplitudes 1 and 1.5. (d) and (e) Variation of f and R as a function of the layer dip a. IA, inner arc; OA, outer arc.
10.2. Successive superposition of PTLS and ETLS

For the study of folds formed by ETLS followed by PTLS
or vice versa, each mechanism was applied to produce one half
of the final amplitude.

With a sequence ETLSePTLS (Fig. 6), some features re-
semble those obtained with PTLS as a single mechanism
(Fig. 4), e.g. no bulge is formed and the f� a curves show
a nearly linear pattern. Nevertheless, maximum R values are
higher (2.37 in the inner arc and 1.62 in the outer arc for
h¼ 1.5), and area change values lower (39% decrease in the
inner arc and 24% increase in the outer arc) than for pure
PTLS. An important difference with the pure PTLS folding
is that in the ETLSePTLS sequence the percentage of area de-
crease in the inner arc (39%) is higher than the percentage of
area increase in the outer arc (24%). This difference is pro-
duced because when PTLS begins to operate, the neutral
line, as a result of the ETLS stage, is not equidistant from
the layer boundaries, since the inner arc is thicker than the
outer arc. Thus, the percentage of inner arc shortening during
the PTLS stage is higher than the percentage of outer arc
stretching.

Some results of the PTLSeETLS sequence (Fig. 7) resem-
ble those obtained with pure ETLS, e.g. a bulge, though
smaller, appears for h¼ 1.5, the f� a curves are nonlinear
for the inner arc, and loops appear in the R� a and J� a
curves of this arc. R maximum values are lower than in pure
ETLS (4.86 in the inner arc and 1.70 in the outer arc for
h¼ 1.5). As in pure PTLS, area change percentages should
be the same in both arcs. Nevertheless, the values observed
(J¼ 0.80 or 20% area reduction in the inner arc, and
J¼ 1.16 or 16% area increase in the outer arc for h¼ 1.5)
show a difference of 4% that can be explained by the high R
values and the discrete division of the folded layer in quadri-
laterals. The results presented above indicate that the succes-
sive superposition of the two mechanisms gives rise to folds
with characteristics intermediate between those of the folds
obtained with pure ETLS and PTLS.

It is probable that a combination of both mechanisms in
natural folding begins with ETLS in the first stages, when
the amplitude, curvature and curvature variation of the neu-
tral line are low. When the amplitude increases, the curvature
and the curvature variation generally concentrate in the hinge
zone. Thus, high strain values appear in this zone, and it is
more and more difficult to preserve area constant there.
This is the stage when PTLS becomes probable. It makes
possible area change and prevents the development of a bulge
in the inner arc. The final result of the superposition is a fold
with features intermediate between those of pure ETLS
and PTLS. These pure mechanisms appear as extreme
possibilities spanning an infinite number of intermediate
combinations.
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Fig. 6. Graphical results for the ETLSePTLS folding sequence. Each mechanism is responsible for one half of the final amplitude. (a), (b) and (c) Initial and folded

configuration for normalised amplitudes 1 and 1.5. (d), (e) and (f) Variation of f, R, and J as a function of the layer dip a. IA, inner arc; OA, outer arc.
10.3. Simultaneous superposition of PTLS and ETLS

The results obtained in this case (Fig. 8) are characterised
by f, R and J values which are in general intermediate be-
tween those obtained both for the sequences ETLSePTLS
and PTLSeETLS. With h¼ 1.5, there is no bulge in the hinge
zone, but the f� a curve is not linear for the inner arc of the
folded layer. R values are also intermediate between those
found in the sequences cited (3.11 in the inner arc and 1.66
in the outer arc for h¼ 1.5), and the same happens with the
area change (J¼ 0.68 in the inner arc and J¼ 1.2 in the outer
arc for h¼ 1.5).

10.4. Generalised superposition of PTLS and ETLS

To analyse the effects of the successive or simultaneous su-
perposition of the two types of TLS with variable intensity,
some curves have been obtained that show the variation of R
and J in the hinge point of the inner and the outer arc against
the percentage of each type of TLS (Fig. 9). This percentage is
measured from the ratio between the normalised amplitude
reached by the mechanism considered and the total amplitude
of the fold that results from the superposition. From these
curves the following conclusions are drawn:

- The intensity of strain (R value) is always higher in the in-
ner arc than in the outer arc for any combination of ETLS
and PTLS. Nevertheless, the difference in intensity be-
tween the two arcs decreases as the percentage of PTLS
increases.

- R always decreases as the percentage of PTLS increases.
The decrease is much more intense in the inner than in
the outer arc.

- In the inner arc, the curves are very different depending on
the superposition order. For the sequence ETLSePTLS,
the decrease in R is quite abrupt for small percentages of
PTLS, and then it is less pronounced. On the other hand,
for the sequence PTLSeETLS, decrease in R is quite con-
stant, nearly linear, as the percentage of PTLS increases.
With simultaneous superposition of both mechanisms, re-
sults are intermediate between those found in the previous
sequences.

- In the outer arc, the form in the R curves depends only
slightly on the superposition order.

- Area change (J ) curves always show an increase in the
outer arc and a decrease in the inner arc as the percentage
of PTLS increases.

- J curves for the inner arc are different depending on the
order of application of the mechanisms. J variation is
more abrupt for small percentages of PTLS in the se-
quence ETLSePTLS than in PTLSeETLS, with an inter-
mediate situation in the case of simultaneous
superposition. The variations in the outer arc for the differ-
ent sequences are small.



1844 N.C. Bobillo-Ares et al. / Journal of Structural Geology 28 (2006) 1835e1848
Fig. 7. Graphical results for the PTLSeETLS folding sequence. Each mechanism is responsible for one half of the final amplitude. (a), (b) and (c) Initial and folded

configuration for normalised amplitudes 1 and 1.5. (d), (e) and (f) Variation of f, R, and J as a function of the layer dip a. IA, inner arc; OA, outer arc.
11. Tangential longitudinal strain in natural folds

Some structures common in the hinge zone of folds at the
outcrop scale have been attributed to TLS. The presence of
a bulge in the inner arc of the hinge zone clearly indicates
that ETLS played an important role in the formation of the
fold (Fig. 10a). In other cases, the intense deformation in the
inner arc is accommodated through the development of reverse
faults that suggest brittle accommodation of a bulge related to
ETLS (Fig. 10b).

The presence of wedge-shaped radial veins increasing in
thickness towards the outer arc of the hinge zone and filled
with minerals as quartz or calcite, indicates tangential stretch-
ing of the outer arc and area creation on the fold profile by
fracturing (Fig. 11). These structures are a manifestation of
TLS folding through a brittle deformation whose ductile
equivalent can be considered PTLS. Similarly, the presence
of a convergent cleavage, mainly formed by pressure solution,
in the inner arc of the hinge zone suggests elimination of ma-
terial and area reduction, which can also be related to PTLS
activity. Ormand and Hudleston (2003) suggested that the ma-
terial that is eliminated from the inner arc of the hinge zone
can crystallise then in veins or cracks.

Radial cracks in the outer arc of the hinge zone and conver-
gent cleavage in the inner arc are quite common in natural
folds. However, structures ‘‘a priori’’ complementary to these,
such as concentric cleavage in the outer arc or concentric ex-
tensional veins in the inner arc are very rare. The lack of con-
centric cleavage in the outer arc can be explained because the
intensity of strain is usually low in this arc (Figs. 4e8), but the
lack of concentric extensional veins in the inner arc poses
a paradox if folding is explained as a result of ETLS, which
produces high R values in the inner arc. In fact, in brittlee
ductile shear zones, probably developed in conditions similar
to those of TLS, tension cracks are much more common
than cleavage. A possible explanation is that the lack of con-
centric extensional veins is due to the operation of the PTLS
mechanism, which involves lower R values and the absence
of stretching in the direction of the major axis of the strain
ellipse in the inner arc of the hinge zone.
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Fig. 8. Graphical results for the folding sequence with simultaneous superposition of PTLSeETLS, simulated by the application of an alternation of small am-

plitude PTLS and ETLS folding steps. Each mechanism is responsible for one half of the final amplitude. (a), (b) and (c) Initial and folded configuration for nor-

malised amplitudes 1 and 1.5. (d), (e) and (f) Variation of f, R, and J as a function of the layer dip a. IA, inner arc; OA, outer arc.
12. Discussion and conclusions

The analysis of the kinematical mechanisms operating in
natural folds has brought to light that TLS, with all its variants,
is a very common mechanism in the buckling of individual
competent layers (Ramsay, 1967; Hudleston and Holst,
1984; Ramsay and Huber, 1987; Hudleston and Tabor, 1988;
Lemiszki et al., 1994; Hudleston and Srivastava, 1997; Gutiér-
rez-Alonso and Gross, 1999; Ormand and Hudleston, 2003;
Toimil, 2005). Nevertheless, a consistent definition of this
mechanism is necessary, since in some cases two simultaneous
properties have been attributed to folds formed by TLS that in
general are mutually incompatible: the maintaining of the
principal directions of strain tangential and normal to the layer
boundaries, and area conservation in the fold layer profile. On
the other hand, some authors, taking into account structures
commonly associated with folds, have proposed models of
tangential longitudinal strain with area change (Hudleston
and Holst, 1984; Hudleston and Tabor, 1988; Hudleston and
Srivastava, 1997; Ormand and Hudleston, 2003). Nevertheless,
the properties of these models have not yet been developed
from a theoretical point of view.

This paper presents the mathematical development of a gen-
eral model of TLS based on two simple conditions: a neutral
line exists, and straight lines originally normal to the neutral
line remain straight and normal to it as folding progresses.
From this general model, two particular cases have been de-
veloped and analysed. The first of them, named parallel tan-
gential longitudinal strain (PTLS), implies conservation of
the bed orthogonal thickness (parallel folds), so that the orig-
inal distance from the neutral line to the layer boundaries is
maintained constant during folding. In this model, one of
the principal values of strain is the unit (l1 in the inner arc
and l2 in the outer arc) and the corresponding principal direc-
tion is normal to the layer boundaries, whereas the other prin-
cipal direction is a tangential stretching in the outer arc (l1)
and a tangential shortening in the inner arc (l2), whose value
in both cases is ð1� kðXÞYÞ2; the area on the layer profile
changes as deformation progresses in a way that the percent-
age of area decrease in the inner arc for an initial point (X, Y )
equals the percentage of area increase in the initial point (X,
�Y ). The second case studied is the equiareal tangential lon-
gitudinal strain (ETLS), already studied by Bobillo-Ares et al.
(2000).

Some authors have proposed mechanisms that can be
considered special types of PTLS, e.g. the ‘‘inner arc collapse
by volume loss’’ (Hudleston and Holst, 1984; Hudleston and
Tabor, 1988) or the ‘‘outer arc stretching’’ (Ormand and
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ig. 9. Generalised superposition of PTLS and ETLS. (a) Results when ETLS is applied before. (b) Results when PTLS is applied before. (c) Results for simul-

aneous application of PTLS and ETLS.
Hudleston, 2003). These mechanisms can be considered to be
particular cases of PTLS with a different location of the neu-
tral line, which in the first case is located in the outer arc, and
in the second in the inner arc.

Computer modelling of PTLS and ETLS folds using the
program ‘‘FoldModeler’’ (Bobillo-Ares et al., 2004) has
shed light on the geometrical properties of folds formed by
these two mechanisms and by the successive or simultaneous
combination of them. Comparing pure PTLS and ETLS
folds, it is observed that maximum R values are found in
the hinge point and are higher for ETLS than for PTLS.
Moreover, in the hinge zone, the evolution of folding pro-
duces in many cases an increase in the curvature variation.
This gives rise to intense local R variations in the inner
arc that locally thicken the bed to form bulges for ETLS
folding.

Successive or simultaneous superposition of PTLS and
ETLS gives rise to folds with characteristics intermediate be-
tween those of the pure mechanisms, which appear as extreme
cases separating an infinite range of possibilities. On the other
hand, in cases with successive superposition, results are quite
different, mainly for the inner arc, depending on the order of
the mechanisms. It is suggested that in natural folds it is prob-
able that TLS deformation begin with ETLS. PTLS becomes
important as deformation increases, mainly in the inner arc,
and its accommodation without area change is difficult.

Geometrical models such as those analysed here allow pre-
dictions about the minor structures that can develop in
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Fig. 10. (a) Development of a bulge in the inner arc of a fold formed by TLS in Cambro-Ordovician sandstones near Tapia de Casariego (Asturias, Spain). Bed

thickness is greater in the hinge zone than on the limbs because of post-TLS flattening. (b) Development of reverse faults in the inner arc of a syncline in Cre-

taceous turbidities of the Barrika beach (Biscay, Spain).
different parts of the folded layer. Conversely, structures ob-
served in natural folds can be interpreted as a result of the op-
eration of a specific mechanism. Thus, minor structures
common in the hinge zone of natural folds are indicative of
the different types of TLS. The presence of a bulge or reverse
faults in the inner arc is related to ETLS, whereas wedge-
shaped mineralized cracks opening towards the outer arc or
pressure solution cleavage in the inner arc are related to
PTLS. The lack of concentric cracks in the inner arc near
the hinge zone suggests an important contribution of PTLS.

Fig. 11. Development of wedge-shaped quartz veins opening towards the outer

arc in the hinge zone of competent layers (Carboniferous flysch, Santo Toribio

de Liébana, Cantabria, Spain).
A quantitative precise discrimination of the TLS mecha-
nisms involved in natural folds is difficult at present using the-
oretical models, due to the difficulty to determine the strain at
points of the folded layer. The presence of cleavage gives an
approach to the distribution of the strain principal directions,
but this structure is not probable in folds formed only by
TLS. Nevertheless, when TLS is associated with homogeneous
strain (e.g. layer shortening or fold flattening) development of
cleavage is probable, and it can be used to obtain a quantitative
approach to the involved folding mechanisms by the method
described by Bastida et al. (2003).

Ramsay (1967, p. 401) and Ramsay and Huber (1987, p.
460e461) proposed the mechanism of ‘‘neutral line migra-
tion’’ to mitigate the space problem that appears in the inner
arc of ETLS folds with high strain values. In this mechanism,
the neutral line changes its material location during folding
and moves towards the inner arc. Modelling this process is dif-
ficult, but a good approximation to the resulting folded config-
uration that it produces can be obtained with the program
‘‘FoldModeler’’, assuming that the neutral line is not located
midway between the layer boundaries in the original configu-
ration, but it is located nearer to the boundary that will become
inner arc.

According to Ramsay (1967, p. 400), another way to avoid
the high strain concentrations in the inner arc is to increase the
curvature of the limbs and to maintain hinge curvature con-
stant as folding progresses. This would lead to a tendency
for rounded fold profile shapes. Nevertheless, if the curvature
increases in the fold inflection points, a problem arises in con-
necting successive folds, since there would exist a deformation
discontinuity in these inflection points both for ETLS and
PTLS. This makes a curvature increase near the inflection
points improbable. Another possibility to avoid the high strain
concentrations in the inner arc is that the folding mechanism
changes, e.g. to flexural flow (Ramsay, 1967, pp. 400e401).

Hinge migration during folding has been described by sev-
eral authors (e.g. Fowler and Windsor, 1996; Ghosh et al.,
1996; Zhang et al., 2000) and it is probable to occur in
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some cases during TLS. Geometrical modelling of this migra-
tion is difficult. Nevertheless, it can explain the presence of
features typical of the hinge zone (e.g. wedge-shaped veins
in the outer arc) outside the final hinge zone.

Although TLS models analysed here are all 2D, the results
obtained allow some suggestions about the 3D geometry of the
folds. Thus, assuming isochoric deformation, which is reason-
able in competent rocks suffering TLS, anticlastic bending
(Ferguson and Andrews, 1928; Ramsay, 1967, p. 402) and pos-
sible related features would be related to PTLS.
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Appendix A. Important definitions

The notation B¼ Aþ v indicates that B is the point that re-
sults from translating point A by vector v. This implies that
Aþ AB

�! ¼ B. In order to define derivatives of point functions,
it is convenient to introduce the difference of points as
a vector:

B�Ad AB
�!

: ðA1Þ

The oriented area of a parallelogram characterized by the
ordered pair of vectors a and b is designed by S(a, b). In
any arbitrary basis e¼ (e1, e2) in the plane we have, by the bi-
linearity and alternance properties of S($, $):

Sða;bÞ ¼
����a1 b1

a2 b2

����Sðe1;e2Þ; ðA2Þ

being a¼ a1e1þ a2e2 and b¼ b1e1þ b2e2. By convention, if e
is a direct orthonormal basis, we put: S(e1, e2)¼þ1.

References

Aller, J., Bastida, F., Toimil, N.C., Bobillo-Ares, N.C., 2004. The use of conic

sections for the geometrical analysis of folded surface profiles. Tectono-

physics 379, 239e254.
Bastida, F., Bobillo-Ares, N.C., Aller, J., Toimil, N.C., 2003. Analysis of fold-

ing by superposition of strain patterns. Journal of Structural Geology 25,

1121e1139.

Bobillo-Ares, N.C., Bastida, F., Aller, J., 2000. On tangential longitudinal

strain folding. Tectonophysics 319, 53e68.

Bobillo-Ares, N.C., Toimil, N.C., Aller, J., Bastida, F., 2004. FoldModeler:

a tool for the geometrical and kinematical analysis of folds. Computers

& Geosciences 30, 147e159.

Ferguson, A., Andrews, J.P., 1928. An experimental study of the anticlastic

bending of rectangular bars of different cross sections. Proceedings of

the Physical Society 41, 1e17.

Fowler, T.J., Windsor, C.N., 1996. Evolution of chevron folds by profile shape

changes: comparison between multilayer deformation experiments and

folds of the BendigoeCastlemaine gold fields, Australia. Tectonophysics

258, 125e150.

Ghosh, S.K., Deb, S.K., Sengupta, S., 1996. Hinge migration and hinge re-

placement. Tectonophysics 263, 319e337.

Gutiérrez-Alonso, G., Gross, M.R., 1999. Structures and mechanisms associ-

ated with development of a fold in the Cantabrian Zone thrust belt, NW

Spain. Journal of Structural Geology 21, 653e670.

Hudleston, P.J., Holst, T.B., 1984. Strain analysis and fold shape in a limestone

layer and implication for layer rheology. Tectonophysics 106, 321e347.

Hudleston, P.J., Srivastava, H.B., 1997. Strain and crystallographic fabric pat-

tern in a folded calcite vein: the dependence on initial fabric. In: Sengupta

(Ed.), Evolution of Geological Structures in Micro- to Macro-scales.

Chapman & Hall, London, pp. 259e271.

Hudleston, P.J., Tabor, J., 1988. Strain and fabric development in a buckled

calcite vein and rheological implications. Bulletin of the Geological Insti-

tutions of the University of Uppsala 14, 79e94.

Hudleston, P.J., Treagus, S.H., Lan, L., 1996. Flexural flow folding: does it oc-

cur in nature? Geology 24, 203e206.

Kuenen, P.U., de Sitter, L.U., 1938. Experimental investigation into the mech-

anism of folding. Leidse Geologische Mededelingen 10, 217e240.

Lemiszki, P.J., Landes, J.D., Hatcher Jr., R.D., 1994. Controls on hinge-paral-

lel extension fracturing in single-layer tangentialelongitudinal strain folds.

Journal of Geophysical Research 99, 22,027e22,041.

Ormand, C.J., Hudleston, P.J., 2003. Strain paths of three small folds from the

Appalachian Valley and Ridge, Maryland. Journal of Structural Geology

25, 1841e1854.

Ramberg, H., 1961. Relationships between concentric longitudinal strain and

concentric shearing strain during folding of homogeneous sheets of rock.

American Journal of Science 259, 382e390.

Ramsay, J.G., 1967. Folding and Fracturing of Rocks. McGraw-Hill Book

Comp., New York, pp. 568.

Ramsay, J.G., Huber, M.I., 1987. Modern Structural Geology. In: Folds and

Fractures, vol. 2. Academic Press, London.

Timoshenko, S., 1940. Strength of Materials. D. Van Nostrand Company,

New York.

Toimil, N.C., 2005. Geometrı́a y patrones de deformación en pliegues simétri-

cos desarrollados en capas competentes. Unpublished thesis, Universidad

de Oviedo.

Zhang, Y., Mancktelow, N.S., Hobbs, B.E., Ord, A., Mühlhaus, H.B., 2000.
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